Nazwa implementacji:

Budowa układów i programowanie modułu - a

Autor: Krzysztof Bytow

Opis implementacji: Zastosowanie modułu-interfejsu Arduino oraz obsługa interaktywnego terminala Arduino IDE, służącego do programowania mikrokontrolera. Prezentacja i wyjaśnienie sposobu zestawiania połączeń na podstawie dokumentacji ilustrującej montaż układów ćwiczeniowych. Podłączenie i sterowanie diodą LED z wykorzystaniem potencjometru oraz z wykorzystaniem wyjścia PWM. Odczyt wartości z wejścia analogowego.

Wprowadzenie - opis wyprowadzeń, konfiguracja programu, podłączenie do komputera.

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

przewód usb wpinamy w gniazdo USB →

Układ należy podłączyć przewodem USB do komputera.

Opis wyprowadzeń Arduino UNO R3.

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Uruchomienie i konfiguracja środowiska Arduino IDE.

Z zakładki Tools wybieramy Board, a następnie wersję, którą posiadamy (Arduino UNO).

💿 💿	sketch_feb12a Arduino 0022		88
File Edit Sketck	Tools Help		
0001	Auto Format	Ctrl+T	
sketch_feb12	Archive Sketch		E
	Fix Encoding & Reload		E.
	Serial Monitor	Ctrl+Shift+M	î
	Board	>	
	Serial Port		 ✓ dev/ttyACM0
	Dura Datalandar		

Następnie należy wybrać port, pod który został podłączony układ (Tools \rightarrow Serial port \rightarrow odpowiedni port).

Opis interfejsu środowiska Arduino IDE.

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Sketch_feb20a Capisz prog Otwórz program Nowy program Wgraj do Arduino (Upload) Weryfikacja programu	ram Monitor portu szeregowego
<	

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

STRATEGIA WOLNYCH I OTWARTYCH IMPLEMENTACJI – www.e-swoi.pl

Schemat połączeń – sterowanie diodą z wykorzystaniem potencjometru.

SWØA

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

SWEE STRATEGIA WOLNYCH I OTWARTYCH IMPLEMENTACJI – www.e-swoi.pl

Uczeń/Uczennica po zestawieniu połączeń zgłasza nauczycielowi gotowość do sprawdzenia układu i wszystkich połączeń.

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

potencjometr $10k\Omega \rightarrow$

Kod implementacji:

W zbudowanym układzie sterujemy jasnością diody, regulując wartość rezystancji na potencjometrze. Dodatkowo podłączyliśmy się w trzech miejscach do wejść analogowych w celu pomiaru wartości, a otrzymane wyniki zaprezentowane są na wyświetlaczu monitora. Uwaga wynik pomiaru może być obarczony błędem wynikającym z zasilania USB (nie zawsze na wyjściu jest 5 V).

float x,y,z;	// tworzyı	my zmienną typu float do przechowywania i pracy z
1.	/ liczbami zmie	ennoprzecinkowymi
void setup()	// począ	įtkowa konfiguracja – część przygotowująca układ do
{	// działania	
Serial.begin(9600);	// ust	zawienie prędkości komunikacji
}		
void loop()	// główna	a pętla
{		
x=analogRead(0)*5	/1024.0; //	/ przypisanie wartości odczytanej z wej. analogowego
y=analogRead(1)*5	/1024.0; //	/ i przeliczenie na napięcie (*); podzielone przez dokładność
z=analogRead(2)*5	/1024.0; //	/ przetwornika analogowo cyfrowego
Serial.println(x);	// wysła	nie do komputera wartości x
Serial.println(y);	// wysła	nie do komputera wartości x
Serial.println(z);	// wysła	nie do komputera wartości x
delay(2500);	// odcz	zekanie 2,5 sekundy
Serial.println("Naste	epny pomiar");	// wysłanie komunikatu
Serial.println("	");	// wysłanie komunikatu
}		

Po wgraniu kodu należy w programie Arduino IDE uruchomić Serial Monitor (lub terminal).

Komentarz (nie wpisywać do kodu implementacji):

void setup() - początkowa konfiguracja - część przygotowująca;

7

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

void loop() - główna pętla - wpisany program będzie wykonywany cyklicznie, wciśnięcie przycisku reset powoduje uruchomienie kodu od początku;

funkcja "pinMode" ustawia kierunek sygnału na pinie modułu (INPUT, OUTPUT);

funkcja "digitalWrite" ustawia cyfrowy stan sygnału na pinie modułu (HIGH, LOW);

funkcja "delay" czeka ustaloną w milisekundach długość czasu (1000 ms = 1 s);

(*) maksymalne napięcie mierzone przez układ to 5V, (**) dokładność przetwornika A/C to 10 bitów, czyli 1024 wartości;

KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI

Projekt "Strategia Wolnych i Otwartych Implementacji jako innowacyjny model zainteresowania kierunkami informatyczno-technicznymi oraz wspierania uczniów i uczennic w kształtowaniu kompetencji kluczowych" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.