

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Opracowane w ramach projektu: "Informatyka – mój sposób na poznanie i opisanie świata" realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Zakres ćwiczenia:

- Obwody prądu sinusoidalnego jednofazowego.
- Analiza elementarnych obwodów zawierających elementy R, L i C.
- Schematy zastępcze elementów rzeczywistych R, L i C.
- Wykresy wektorowe.
- Obliczanie obwodów szeregowych, równoległych i szeregowo-równoległych RLC.
- Właściwości układów szeregowych i równoległych RC i RLC.

Autor: Marcin Godziemba-Maliszewski

Radom 2013

Scenariusz prowadzenia ćwiczenia

Celem ćwiczenia jest zapoznanie się z właściwościami obwodów prądu sinusoidalnego jednofazowego zawierającego elementy R, L i C.

1. Analiza elementarnych obwodów zawierających elementy R, L i C.

Celem modułu jest zapoznanie się z podstawowymi elementami pasywnymi R, L i C oraz z ich wykresami wektorowymi i czasowymi.

Rezystor

Rys.1. Wirtualny przyrząd pomiarowy do badania rezystora.

Zadanie 1.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 1 należy przeprowadzić symulację obwodu jednofazowego zawierającego element pasywny – rezystor – dla parametrów określonych przez prowadzącego ćwiczenie. Wyniki pomiarów i obliczeń należy zapisać w tabeli pomiarowej nr 1.

Tabela pomiarowa nr 1.

I.n	Pom	niary	Obliczenia				
Lp.	Lp. I [A] U [V]		$R[\Omega]$	P [W]	$\cos \varphi$		

Pojemność (kondensator).

Rys.2. Wirtualny przyrząd pomiarowy do badania kondensatora.

Zadanie 2.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 2 należy przeprowadzić symulację obwodu jednofazowego zawierającego kondensator dla parametrów określonych przez prowadzącego ćwiczenie. Wyniki pomiarów i obliczeń należy zapisać w tabeli pomiarowej nr 2.

Tabela pomiarowa nr 2.

In	Pon	ıiary	Obliczenia			
Lp.	Lp. I[A] U[V]		$Z[\Omega]$	P [W]	$\cos \varphi$	

Indukcyjność (cewka indukcyjna).

Rys.3. Wirtualny przyrząd pomiarowy do badania indukcyjności.

Zadanie 3.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 3 należy przeprowadzić symulację obwodu jednofazowego zawierającego indukcyjność dla parametrów określonych przez prowadzącego ćwiczenie. Wyniki pomiarów i obliczeń należy zapisać w tabeli pomiarowej nr 3.

Tabela pomiarowa nr 3.

In	Pom	iiary	Obliczenia				
Lp.	I [A]	U [V]	Ζ[Ω]	P [W]	$\cos \varphi$		

Zadanie 4.

Na podstawie pomiarów i obliczeń dla poszczególnych przypadków odbiorników jednofazowych zasilanych napięciem jednofazowym sinusoidalnym należy wykonać wykresy wektorowe wszystkich prądów i napięć oraz dokonać bilansu mocy.

2. Analiza rzeczywistych elementów R, L i C w obwodach jednofazowych sinusoidalnych.

Celem modułu jest zapoznanie się z rzeczywistymi elementami R, L i C oraz z ich schematami zastępczymi, wykresami wektorowymi i czasowymi.

Rezystor.

Schemat zastępczy rezystora jest reprezentowany przez szeregowo-równoległe połączenie elementów RLC reprezentujących rezystancje właściwą R, pojemność C_D dielektryka zależną od technologii wykonania rezystora oraz indukcyjność doprowadzeń L_D.

Rys.4. Wirtualny przyrząd pomiarowy do badania rezystora.

Zadanie 5.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 4 należy zaobserwować wpływ poszczególnych elementów schematu zastępczego (L_D i C_D) na rezystancje rezystora oraz na kąt fazowy ϕ pomiędzy prądem a napięciem.

Zadanie 6.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 4 należy przeprowadzić symulację obwodu jednofazowego zawierającego rezystor dla parametrów określonych przez prowadzącego ćwiczenie. Wyniki pomiarów i obliczeń należy zapisać w tabeli pomiarowej nr 4.

Tabela pomiarowa nr 4.

I.m.		Pom	iary		Obliczenia				
Lp.	I[A]	U[A]	$I_{RL}[A]$	Ic [A]	R [Ω]	$ Z [\Omega]$	P [W]	Q [var]	cos φ

Zadanie 7.

Na podstawie pomiarów i obliczeń dla danych z zadania 6 należy wykonać wykresy wektorowe wszystkich prądów i napięć w układzie oraz dokonać bilansu mocy.

Pojemność (kondensator).

Schemat zastępczy kondensatora jest reprezentowany przez szeregowo-równoległe połączenie elementów RLC reprezentujących pojemność właściwą C, upływność kondensatora reprezentowaną poprzez rezystancję R_U oraz indukcyjność i rezystancję doprowadzeń L_D i R_D zależną od technologii wykonania kondensatora.

Rys.5. Wirtualny przyrząd pomiarowy do badania kondensatora.

Zadanie 8.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 5 należy zaobserwować wpływ poszczególnych elementów schematu zastępczego (R_U, L_D i R_D) na pojemność kondensatora oraz na kąt fazowy φ pomiędzy prądem a napięciem.

Zadanie 9.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 5 należy przeprowadzić symulację obwodu jednofazowego zawierającego kondensator rzeczywisty dla parametrów określonych przez prowadzącego ćwiczenie. Wyniki pomiarów i obliczeń należy zapisać w tabeli pomiarowej nr 5.

Tabela pomiarowa nr 5.

In		Pom	niary		Obliczenia				
Lp.	I[A]	U[A]	$I_R[A]$	Ic [A]	$ Z [\Omega]$	P [W]	Q [var]	tg δ	$\cos \varphi$

Zadanie 10.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 5 należy zaobserwować wpływ poszczególnych elementów schematu zastępczego (R_U, L_D i R_D) na współczynnik stratności kondensatora.

Zadanie 11.

Na podstawie pomiarów i obliczeń dla danych z zadania 9 należy wykonać wykresy wektorowe wszystkich prądów i napięć w układzie oraz dokonać bilansu mocy.

Indukcyjność (cewka indukcyjna).

Schemat zastępczy cewki indukcyjnej jest reprezentowany przez szeregowo-równoległe połączenie elementów RLC reprezentujących indukcyjność właściwą L, rezystancję uzwojenia cewki R oraz pojemność dielektryka C.

Rys.6. Wirtualny przyrząd pomiarowy do badania indukcyjności.

Zadanie 12.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 6 należy zaobserwować wpływ poszczególnych elementów schematu zastępczego (R_L i C_L) na indukcyjność cewki oraz na kąt fazowy ϕ pomiędzy prądem a napięciem.

Zadanie 13.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 6 należy przeprowadzić symulację obwodu jednofazowego zawierającego rzeczywistą cewkę indukcyjną dla parametrów określonych przez prowadzącego ćwiczenie. Wyniki pomiarów i obliczeń należy zapisać w tabeli pomiarowej nr 6.

Tabela pomiarowa nr 6.

In			Pomia	ury .		Obliczenia			
Lp.	I[A]	U[A]	$I_{RL}[A]$	$I_C[A]$	R [Ω]	$ Z [\Omega]$	P [W]	Q [var]	$\cos \varphi$

Zadanie 14.

Na podstawie pomiarów i obliczeń dla danych z zadania 13 należy wykonać wykresy wektorowe wszystkich prądów i napięć w układzie oraz dokonać bilansu mocy.

3. Właściwości układów zawierających elementy R, L i C.

Celem modułu jest zapoznanie się z podstawowymi właściwościami układów zawierających elementy pasywne R, L i C oraz z ich charakterystykami czasowymi i wykresami wektorowymi

Charakterystyki amplitudowe i fazowe układu RC.

Celem modułu jest poznanie charakterystyk częstotliwościowych różniczkującego i całkującego układu RC. Układy RC mogą być traktowane, jako elementarne układy filtrów dolno i górno przepustowych. W trakcie wykonywania ćwiczeń należy zaobserwować jak wpływa zmiana parametrów R i C na pasmo przenoszenia filtru.

Rys. 7. Układ do wyznaczania charakterystyk częstotliwościowych całkującego a) i różniczkującego b) układu RC.

Zadanie 15.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 7a należy zaobserwować charakterystyki częstotliwościowe (amplitudowe i fazowe) całkującego (filtr dolnoprzepustowy) układu RC. Wyznaczyć częstotliwości graniczne dla kilku stałych czasowych układu: 10, 0.1, 0.001 i 0.00001 s. Dane zapisać w tabeli pomiarowej nr 7.

Tabela pomiarowa nr 7.

Lp.	$R[k\Omega]$	C [µF]	T [s]	fgr [Hz]	H(s)			
	$f_{gr} = \frac{1}{2\pi RC}$							

Zadanie 16.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 7b należy zaobserwować charakterystyki częstotliwościowe (amplitudowe i fazowe) różniczkującego (filtr górnoprzepustowy) układu RC. Wyznaczyć częstotliwości graniczne dla kilku stałych czasowych układu: 10, 0.1, 0.001 i 0.00001 s. Dane zapisać w tabeli pomiarowej nr 8.

Tabela pomiarowa nr 8.

Lp.	$R[k\Omega]$	C [µF]	T [s]	f _{gr} [Hz]	H(s)		
	$f_{ar} = \frac{1}{2 - PC}$						

Pobudzenie układu impulsem jednostkowym.

Celem modułu jest zaobserwowanie sposobu całkowania lub różniczkowania sygnału wejściowego przez układ RC.

W trakcie ćwiczenia należy zaobserwować następujące właściwości odpowiedzi na skok jednostkowy:

- przebieg otrzymany w wyniku odpowiedzi ma charakter wykładniczy,
- styczna wyprowadzona z punktu U_M przecina oś czasu w punkcie t = T, a więc nachylenie przebiegu wyjściowego w chwili t = 0+ jest proporcjonalne do $\frac{U_M}{T}$,
- amplituda przebiegu wynosi U_M, maleje do 90% wartości początkowej w chwili t ≈ 0,1T, i do 10% w chwili t ≈ 2,3T,
- sygnał wyjściowy maleje do 1% wartości po około 4,6T.

Zadanie 17.

Dla parametrów zapisanych w tabeli pomiarowej nr 7 zaobserwować sposób całkowania odpowiedzi układu na impuls jednostkowy. Dane pomiarowe zapisać w tabeli pomiarowej nr 9. Należy wyznaczyć czasy $T_{10\%}$ dla 0.1 UM oraz $T_{90\%}$ dla 0.9UM. Wynik należy zapisać w tabeli pomiarowej nr 9 oraz wyznaczyć czas $\Delta T = T_{90\%} - T_{10\%}$

Tabela pomiarowa nr 9.

Lp.	$R [k\Omega]$	C [µF]	T [s]	fgr [Hz]	H(s)	T _{10%} [s]	T90%[s]	$\Delta T = T_{90\%} T_{10\%}[s]$	$\Delta T/T$

Rys. 8. Wyznaczanie odpowiedzi układu na skok jednostkowy.

Z wykresu należy wyznaczyć stałą czasową układu oraz czasy T10 ($\approx 0,1\tau$) i T90 ($\approx 2,3\tau$) przypadające odpowiednio dla 0,9 U_m oraz 0,1 U_m. Sposób wyznaczania wartości przedstawiono na poniższym rysunku:

Rys.9. Graficzne wyznaczanie stałej czasowej układu całkującego oraz czasów T10 i T90.

Zadanie 18.

Dla parametrów zapisanych w tabeli pomiarowej nr 8 zaobserwować sposób różniczkowania odpowiedzi układu na impuls jednostkowy. Dane pomiarowe zapisać w tabeli pomiarowej nr 10. Należy wyznaczyć czasy $T_{10\%}$ dla 0.1 UM oraz $T_{90\%}$ dla 0.9UM. Wynik należy zapisać w tabeli pomiarowej oraz wyznaczyć czas $\Delta T=T_{90\%}-T_{10\%}$

Tabela pomiarowa nr 10.

Lp.	$R[k\Omega]$	C [µF]	T [s]	fgr [Hz]	H(s)	T10% [s]	T90%[s]	$\Delta T = T_{90\%} - T_{10\%}[s]$	$\Delta T/T$

Rys. 10. Wyznaczanie odpowiedzi układu na skok jednostkowy.

Z wykresu należy wyznaczyć stałą czasową układu oraz czasy T10 ($\approx 0,1\tau$) i T90 ($\approx 2,3\tau$) przypadające odpowiednio dla 0,9 U_m oraz 0,1 U_m. Sposób wyznaczania wartości przedstawiono na poniższym rysunku:

Rys. 11. Wyznaczanie stałej czasowej układu oraz czasów T10 i T90.

Odpowiedź układu na skok napięcia.

Celem modułu jest zaobserwowanie procesu całkowania lub różniczkowania układu RC. Układy RC mogą być traktowane, jako elementarne układy filtrów dolno i górno przepustowych lub elementów sterowania wykorzystujące owe własności.

Zadanie 19.

Wykorzystując przyrząd wirtualny pokazany na rysunku 12 zaobserwować proces całkowania skoku napięcia przez układ RC. Jest to przypadek analogiczny do odpowiedzi na skok jednostkowy z tym, że pokazuje sposób ładowania się kondensatora do wartości napięcia U_M .

Rys. 12. Wyznaczanie odpowiedzi układu na skok napięcia.

Dla parametrów zapisanych w tabeli pomiarowej nr 7 należy wyznaczyć czasy T_{10%} dla 0.1 UM oraz T_{90%} dla 0.9UM. Wynik należy zapisać w tabeli pomiarowej nr 11 oraz wyznaczyć czas $\Delta T = T_{90\%} - T_{10\%}$

Tabela	abela pomiarowa nr 11. Wyznaczenie parametrów czasowych różniczkującego układu RC.								
Lp.	$R[k\Omega]$	C [µF]	T [s]	f _{gr} [Hz]	H(s)	T10% [s]	T90%[s]	$\Delta T = T_{90\%} - T_{10\%} [s]$	$\Delta T/T$

Rys.13. Wyznaczanie stałej czasowej układu oraz czasów T10 i T90.

Zadanie 20.

Wykorzystując przyrząd wirtualny pokazany na rysunku 14 zaobserwować proces różniczkowania skoku napięcia przez układ RC. Jest to przypadek analogiczny do odpowiedzi na skok jednostkowy i pokazuje sposób ładowania się kondensatora do wartości napięcia U_M.

Rys. 14. Wyznaczanie odpowiedzi układu na skok napięcia.

Dla parametrów zapisanych w tabeli pomiarowej nr 8 należy wyznaczyć czasy $T_{10\%}$ dla 0.1 UM oraz $T_{90\%}$ dla 0.9UM. Wynik należy zapisać w tabeli pomiarowej nr 12 oraz wyznaczyć czas $\Delta T = T_{90\%}$ - $T_{10\%}$

Tabela pomiarowa nr 12. Wyznaczenie parametrów	v czasowych różniczkującego układu RC
--	---------------------------------------

					• · ·] • · · · • = · · · •] • · • 8				
Lp.	$R[k\Omega]$	C [µF]	T [s]	fgr [Hz]	H(s)	T10% [s]	T90%[s]	$\Delta T = T_{90\%} T_{10\%} [s]$	$\Delta T/T$

Rys.15. Wyznaczanie stałej czasowej układu oraz czasów T10 i T90.

Pobudzenie układu falą prostokątną.

Celem modułu jest zaobserwowanie procesu całkowania bądź różniczkowania sygnału wejściowego, jakim jest fala prostokątna.

Zadanie 21.

Określić wielokrotność stałej czasowej oraz częstotliwość przebiegu, dla której proces całkowania osiąga 99%. Pomiary przeprowadzić dla układów o parametrach określonych w tabeli pomiarowej nr 7. Spróbować dobrać inne parametry R i C tak, aby f_{gr} i stała czasowa T zostały zachowane.

Tabela pomiarowa nr 13.	Wyznaczenie parametrów	czasowych układu RC.
	vyznaczenie parametrow	czusowych akiada ke.

Lp).	$R_1 [k\Omega]$	$C_{I} [\mu F]$	$R_2[k\Omega]$	$C_2 [\mu F]$	T [s]	fgr [Hz]	H(s)	T99% [s]	F_{fp} [Hz]

Rys. 16. Odpowiedź układu na pobudzenie falą prostokątną.

Zadanie 22.

Określić wielokrotność stałej czasowej oraz częstotliwość przebiegu, dla której proces różniczkowania osiąga 99%. Pomiary przeprowadzić dla układów o parametrach określonych w tabeli pomiarowej nr 8. Spróbować dobrać inne parametry R i C tak, aby fgr i stała czasowa T zostały zachowane.

Tabela pomiarowa nr 14. Wyznaczenie parametrów czasowych układu RC.

Lp.	$R_1 [k\Omega]$	$C_{I} [\mu F]$	$R_2[k\Omega]$	$C_2 [\mu F]$	T[s]	fgr [Hz]	H(s)	T99% [s]	F _{fp} [Hz]

Rys. 17. Odpowiedź układu na pobudzenie falą prostokątną.

Szeregowy układ RLC.

Celem modułu jest zapoznanie się z szeregowym układem RLC oraz wykresami wektorowymi i czasowymi napięć i prądów w obwodzie. Symulator umożliwia obserwację poszczególnych właściwości układu RLC w zależności od nastawionych parametrów symulacji obwodu. Symulator sygnalizuje pojawienie się rezonansu napięć w obwodzie.

Rys. 18. Wirtualny przyrząd pomiarowy do badania szeregowego układu RLC.

Zadanie 23.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 18 zaobserwować wpływ poszczególnych parametrów obwodu na charakter obwodu oraz na wykres wskazowy prądów i napięć.

Zadanie 24.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 18 dla parametrów obwodu podanych przez prowadzącego należy wykonać pomiary prądów i napięć w obwodzie. Wyniki pomiarów należy zapisać w tabeli pomiarowej numer 15.

r_{a} being portion of the parametrow unadure r_{a} r_{a} r_{b} r_{a} r_{b} r_{b														
Lp.	I[A]	U[V]	ω	$U_R[V]$	$U_L[V]$	$U_C[V]$	$Z[\Omega]$	$ Z [\Omega]$	$X_C[\Omega]$	$X_L[\Omega]$	$R[\Omega]$	P [W]	Q [var]	cos φ

Tabela pomiarowa nr 15. Pomiar parametrów układu RLC – H(s)=, fr [Hz]

Zadanie 25.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 18 należy ustawić parametry obwodu tak, aby wywołać zjawisko rezonansu napięć w obwodzie. Zaobserwować wykres wskazowy i wykres czasowy napięć i prądów w obwodzie.

Równoległy układ RLC.

Celem modułu jest zapoznanie się z równoległym układem RLC oraz wykresami wektorowymi i czasowymi napięć i prądów w obwodzie. Symulator umożliwia obserwację poszczególnych właściwości układu RLC w zależności od nastawionych parametrów symulacji obwodu. Symulator sygnalizuje pojawienie się rezonansu prądów w obwodzie.

Rys. 19. Wirtualny przyrząd pomiarowy do badania równoległego układu RLC.

Zadanie 26.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 19 zaobserwować wpływ poszczególnych parametrów obwodu na charakter obwodu oraz na wykres wskazowy jak i czasowy prądów i napięć.

Zadanie 27.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 19 dla parametrów obwodu podanych przez prowadzącego należy wykonać pomiary prądów i napięć w obwodzie. Wyniki pomiarów należy zapisać w tabeli pomiarowej numer 16.

Tabela	abela pomiarowa nr 16. Pomiar parametrow układu RLC – H(S)=, rr [HZ]													
Lp.	I[A]	U[V]	ω	$I_R[A]$	$I_L[A]$	$I_C[A]$	$Z[\Omega]$	$ Z [\Omega]$	$X_C[\Omega]$	$X_L[\Omega]$	$R[\Omega]$	P [W]	Q [var]	$\cos \varphi$

Tabela pomiarowa nr 16. Pomiar parametrów układu RLC – H(s)=, fr [Hz]

Zadanie 28.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 19 należy ustawić parametry obwodu tak, aby wywołać zjawisko rezonansu prądów w obwodzie. Zaobserwować wykres wskazowy i wykres czasowy napięć i prądów w obwodzie.

Charakterystyki amplitudowe i częstotliwościowe układu RLC.

Celem modułu jest poznanie charakterystyk częstotliwościowych szeregowego i równoległego układu RLC. Układy RLC mogą być traktowane, jako elementarne układy filtrów dolno, środkowo i górno przepustowych oraz środkowo zaporowych. W trakcie wykonywania ćwiczenia należy zaobserwować, jak wpływa zmiana parametrów R, L i C na pasmo przenoszenia filtru.

Zadanie 29.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 20 należy zaobserwować charakterystyki częstotliwościowe (amplitudowe i fazowe) szeregowego układu RLC. Wyznaczyć częstotliwości graniczne dla kilku dobroci układu: 0.1, 1, 2, 5, 10, 20,50, 100. Dane zapisać w tabeli pomiarowej nr 17 i porównać z danymi obliczonymi z programu. Wyznaczyć szerokość pasma obwodu rezonansowego Δf będącego różnicą dwóch częstotliwości, dla których wielkość wyjściowa maleje o $\frac{1}{\sqrt{2}}$, czyli o 3dB na wykresie amplitudowym.

Dla kilku wybranych częstotliwości rezonansowych spróbować dobrać inne parametry elementów R, L i C.

Rys. 20. Układ do wyznaczania charakterystyk częstotliwościowych układu.

Tabela pomiarowa nr 17. Wyznaczenie parametrów układu RLC.

rubelu p														
Lp.	R [kΩ]	L [mH]	С [µF]	Q	f _{gr} [Hz]	$f_{gr} = \frac{1}{2\pi\sqrt{LC}} [Hz]$	$Q = \frac{1}{R} \sqrt{\frac{L}{c}}$	$\Delta f = \frac{Q}{f_{gr}}$	∆f1,2	H(s)				
gdzie 4	gdzie $\Delta f_{1,2} = \pm \frac{F}{4\pi L} + \frac{1}{2\pi} \sqrt{\left\{\frac{R}{2L}\right\}^2 + \frac{1}{LC}}$													

Zadanie 30.

Wykorzystując wirtualny przyrząd pomiarowy przedstawiony na rysunku 21 należy zaobserwować charakterystyki częstotliwościowe (amplitudowe i fazowe) równoległego układu RLC. Wyznaczyć częstotliwości graniczne dla kilku dobroci układu: 0.1, 1, 2, 5, 10, 20, 50, 100. Dane zapisać w tabeli pomiarowej nr 18 i porównać z danymi obliczonymi z programu. Wyznaczyć szerokość pasma obwodu rezonansowego Δf będącego różnicą dwóch częstotliwości, dla których wielkość wyjściowa maleje o $\frac{1}{\sqrt{2}}$, czyli o 3dB na wykresie amplitudowym.

Dla kilku wybranych częstotliwości rezonansowych spróbować dobrać inne parametry elementów R, L i C.

Rys. 21. Układ do wyznaczania charakterystyk częstotliwościowych układu.

Tabela pomiarowa nr 18. Wyznaczenie parametrów układu RLC.

Lp.	R [kΩ]	L [mH]	C [µF]	f_{gr} [Hz], $f_{gr} = \frac{1}{2\pi\sqrt{LC}}$	$Q = R \sqrt{\frac{c}{L}}$	$\Delta f = \frac{Q}{f_{gr}}$	$\Delta f_{1,2}$	H(s)			
gdzie $\Delta f_{1,2} = \pm \frac{F}{4\pi L} + \frac{1}{2\pi} \sqrt{\left\{\frac{R}{2L}\right\}^2 + \frac{1}{LC}}$											

Odpowiedź układu na skok jednostkowy.

Zadanie 31.

Zaobserwować, jak przekłada się dobroć układu na ilość pojawiających się oscylacji w odpowiedzi układu na skok jednostkowy. Spróbować dobrać inne parametry układu dla danej dobroci układu i zaobserwować jak przekłada się to na charakterystykę amplitudową oraz odpowiedź układu na skok jednostkowy. Określić okres czasu, po którym amplituda spadnie do 1% wartości U_m. Te same pomiary należy przeprowadzić dla układu równoległego.

Rys. 22. Badanie odpowiedzi układu na skok jednostkowy.

Odpowiedź układu na skok napięcia.

Zadanie 32.

Zaobserwować jak przekłada się dobroć układu na ilość pojawiających się oscylacji w odpowiedzi układu na skok napięcia. Spróbować dobrać inne parametry układu dla danej dobroci układu i zaobserwować, jak przekłada się to na charakterystykę amplitudową oraz odpowiedź układu na skok jednostkowy. Określić okres czasu, po którym amplituda spadnie do 1% wartości U_m. Te same pomiary należy przeprowadzić dla układu równoległego.

Rys. 23. Badanie odpowiedzi układu na skok napięcia.

Pobudzenie układu falą prostokątną.

Zadanie 33.

Zaobserwować, w jaki sposób układ reaguje na falę prostokątną podaną na wejście układu.

Rys. 24. Odpowiedź układu na pobudzenie falą prostokątną.

Pobudzenie filtru dowolnym sygnałem okresowym.

Zadanie 34.

Wykorzystując przyrząd pomiarowy zaprezentowany na rysunku 25 należy zaobserwować przenoszenie sygnału okresowego przez filtry RLC. Ustawić parametry układu, jak w tabelach pomiarowych 7 i 8. Dla tych nastaw (ustawień) zaobserwować działanie różnych typów filtrów.

b)

Rys. 25. Pobudzenie filtru dowolnym sygnałem okresowym.

Symulator obwodów jednofazowych.

Celem modułu jest przedstawienie wyników symulacji obwodów zawierających elementy R, L i C w zależności od zadanej konfiguracji układu.

Rys. 26. Okno programu do symulacji obwodów jednofazowych.

Zadanie 35.

Symulator składa się z czterech bloków funkcyjnych:

- 1. Schemat badanego obwodu zależny od włączonych elementów w sekcji szeregowej i równoległej (3)
- 2. Parametry zasilania obwodu
- 3. Konfiguracja elementów obwodu oraz ich wartości
- 4. Wyniki symulacji

Po wprowadzeniu zmian w konfiguracji obwodu należy nacisnąć przycisk "Wykonaj obliczenia" celem przeliczenia wartości.

Wykorzystując przyrząd pomiarowy zaprezentowany na rysunku 26 dla wartości i konfiguracji podanej przez prowadzącego ćwiczenie, należy przeprowadzić symulację obwodu oraz narysować wykres wskazowy prądów i napięć w obwodzie. Wyniki pomiarów i przeprowadzonych obliczeń należy zapisać w tabeli pomiarowej nr 19. Przykładowe konfiguracje obwodów zostały przedstawione na rysunku 27.

Rys. 27. Przykładowe połączenia obwodu z elementami R, L i C.